Rotator

Monday, July 19, 2010

Annoyance due to Noise Pollution

Annoyance

Because some stressful effects depend on qualities of the sound other than its absolute decibel value, the annoyance associated with sound may need to be considered in regard to health effects. For example, noise from airports is typically perceived as more bothersome than noise from traffic of equal volume. Annoyance effects of noise are minimally affected by demographics, but fear of the noise source and sensitivity to noise both strongly affect the 'annoyance' of a noise.Even sound levels as low as 40 dB(A) (about as loud as a refrigerator or library) can generate noise complaints and the lower threshold for noise producing sleep disturbance is 45 dB(A) or lower.
Other factors that affect the 'annoyance level' of sound include beliefs about noise prevention and the importance of the noise source, and annoyance at the cause (i.e. non-noise related factors) of the noise. For instance, in an office setting, audible telephone conversations and discussions between co-workers were considered to be irritating, depending upon the contents of the conversations. Many of the interpretations of the level of annoyance and the relationship between noise levels and resulting health symptoms could be influenced by the quality of interpersonal relationships at the workplace, as well as the stress level generated by the work itself. Evidence regarding the impact of long-term noise versus recent changes in ongoing noise is equivocal on its impact on annoyance.
Estimates of sound annoyance typically rely on weighting filters, which consider some sound frequencies to be more important than others based on their presumed audibility to the human ear. The older dB(A) weighting filter described above is used widely in the U.S., but underestimates the impact of frequencies around 6000 Hz and at very low frequencies. The newer ITU-R 468 noise weighting filter is used more widely in Europe. The propagation of sound varies between environments; for example, low frequencies typically carry over longer distances. Therefore different filters, such as dB(B) and dB(C), may be recommended for specific situations.
When young children are exposed to speech interference levels of noise on a regular basis (the actual volume of which varies depending on distance and loudness of the speaker), they may develop speech or reading difficulties, because auditory processing functions are compromised. Children continue to develop their speech perception abilities until they reach their teenage years. Evidence has shown that when children learn in noisier classrooms, they have a more difficult time understanding speech than those who learn in quieter settings.In a study conducted by Cornell University in 1993, children exposed to noise in learning environments experienced trouble with word discrimination as well as various cognitive developmental delays.In particular the writing learning impairment known as dysgraphia is commonly associated with environmental stressors in the classroom.[citation needed] The effect of high noise levels on small children has been known to cause physical health damages as well. Children from noisy residences often possess a heart rate that is significantly higher (by 2 beats/min on average) than in children from quieter residences.
Furthermore, studies have shown that neighborhood noise (consisting of noise from neighboring apartments, as well as noise within one's own apartment or home) can cause significant irritation and noise stress within people, due to the great deal of time people spend within their residences. This can result in an increased risk of depression and psychological disordersmigraines, and even emotional stress.
In the workplace, noise pollution is generally a problem once the noise level is greater than 55 dB(A). Selected studies show that approximately 35 to 40% of workers in office settings find noise levels from 55 to 60 dB(A) to be extremely irritating. In fact, the noise standard in Germany for mentally stressful tasks is set at 55 dB(A).However, if the noise is source is continuous, the threshold level for tolerable noise levels amongst office workers actually becomes lower than 55 dB(A).
One important effect of noise is to make a person's speech less easy to hear. The human brain automatically compensates the production of speech for background noise in a process called the Lombard effect in which it becomes louder with more distinct syllables. But this cannot fully remove the problems of communication intelligibility made in noise.

No comments:

Post a Comment